o
N

AD-A227 248

W o

[

NASA Contractor Report 181980
ICASE Report No. 90-6

ICASE

EFFICIENT ALGORITHMS FOR DILATED
MAPPINGS OF BINARY TREES

M. Ashraf Igbal

Contract No. NAS1-18107
January 1990

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NNASN DU

National Aeronautics and
Space Administration

Langley Research Center

DTIC

n, ELECTE

00T 041930

Hampton, Virginia 23665-5225

DISTRIBUTION STATEMTI_NT A

Approved -r public release;
Dyatg=eion t0 limited

ceession For
S [}

i1IS GRA&I
NTIC TAB

; Urannounced

i Justification
Efficient Algorithms for Dilated Mappings Of Binary Trees i By
' Distribution/
M. Ashraf Igbal Availability Codes

Avaif‘ahd/or
University of Engineering & Technology, Lahore, Pakistan {P1st Special

Abstract A.,/

We address the problem of finding a 1-1 mapping of the vertices of
a binary tree onto those of a target binary tree such that the son of a
node on the first binary tree is mapped onto a descendent of the image
of that node in the second binary tree. There are two natural measures
of the cost of this mapping, namely the dilation cost i.e. the maximum
distance in the target binary tree between the images of vertices that /
are adjacent in the original tree. The other measure, ezpansion cost, is \A/
defined as the number of extra nodes/edges to be added to the target
binary tree in order to ensure a 1-1 mapping. We describe an efficient
algorithm to find a mapping of one binary tree onto another. We show
that it is possible to minimize one cost of mapping at the expense of
the other.

This problem arises when designing pipelined Arithmetic Logic Units
for special purpose computers. The pipeline is composed of ALU chips
connected in the form of a binary tree. The operands to the pipeline
can be supplied to the leaf nodes of the binary tree which then process
and pass the results up to their parents. The final result is available
at the root. As each new application may require a distinct nesting
of operations, it is useful to be able to find a good mapping of a new
binary tree over existing ALU tree. Another problem arises if every
distinct required binary tree is known beforehand. Here it is useful to
hardwire the pipeline in the form of a minimal supertree that contains
all required binary trees.

This research was supported in part by NASA Contract NAS1-18107
while the author was resident at the Institute for Computer Applications
in Science & Engineering (ICASE), NASA Langley Research Center.

1 INTRODUCTION

We address the problem of finding a 1-1 mapping of
vertices of a binary tree onto those of a target binary tree
such that the son of one binary tree is mapped onto a
descendent of the image of that node in the other binary tree.
There are two natural measures of the cost of this mapping,
namely the dilation-cost i. e. the maximum distance in the
target binary tree between the images of vertices that are
adjacent in the other graph. The other measure i. e. the
expansion-cost, is defined as the number of extra nodes-/edges
to be added into the target binary tree in order to ensure a

1-1 mapping.

This problem arises while designing the Arithmetic Logic
Unit for a proposed special purpose computer (11, & (2]. In
that computer, Navier-Stokes equations are solved using an ALU
pipeline. The pipeline is composed of ALU chips connected in
the form of a binary tree. Each chip has two data inputs for
the two operands and one data output for the processed result.
The operands to the pipeline can be supplied to the leaf or
intermediate chips of the binary tree, which then process and
pass the result up to their parents. The final result is
available at the output of the root node of the binary tree.
The solution of each Navier-Stokes equation may require a

distinct interconnection of the chips.

Once an ALU pipeline in the form of a binary tree 1is
hardwired, it becomes essential to find the mapping of a new
binary tree, corresponding te an application not initially
considered in the design of the pipeline, onto the ALU
pipeline. The following questions regarding the mapping of the

new binary tree onto the ALU pipeline, need to be answered:

1. Is it possible to find a mapping with zero dilation-cost

without altering the hardware structure of the ALU

pipeline?

2. If a mapping with zero dilation-cost does not exist, is
it possible to find a mapping with minimal dilation-cost
but again zero expansion-cost? A mapping with non zero
dilation-cost means that the son of a node of the new
binary tree is assigned to a descendent C(instead of a
son) of the image of that node in the target binary tree.
Under such conditions some additional nonleaf nodes of
the pipeline, will be required to pass the operands upto
their parents without any processing. Such an assignment
will increase the number of stages in the pipeline but
this may have little impact if long vectors are being
processed and is, in any case, preferable to rewiring the

pipeline.

3. If the dilation-cost of the mapping found in (2 is
prohibitively large, what will be the expansion-cost of
the ALU pipeline in order to make the dilation-cost

acceptable?

A new problem regarding the ALU pipeline arises if every
distinct binary tree, corresponding to each Navier-Stokes
equation to be solved, is known before hand. Under such
conditions, it is useful to hardwire the pipeline in the form
of minimal super tree which contains all required binary
trees. This exercise will minimize the number of costly ALU

chips as well as save the cost of rewiring the pipeline.

An almost identical problem arises in the field of
parallel /pipelined processing where the modules of a tree
structured parallel program are to be assigned over +the
processors of a tree machine. The above mentioned constraint

(that the son of each node of the program binary tree should

always be assigned to a descendent of the image of that node
in the processor binary treed will greatly help in reducing
communication & synchronisation overheads. In case the
communication cost of 1-1 mapping of the nodes of the program
binary tree onto the nodes of the processor graph is too high,

we are left with two options:

<1 Add extra nodes to the processor graph in order to

reduce the communication over.ead;

(=P Assign more than one program nodes to a processor so
that the reduced program binary tree nicely fits the

intended tree machine and the communication cost is

reduced.

Prior research in similar fields is conducted by many
researchers. Bokhari (3] has defined the mapping problem and
developed a heuristic in order to maximize the cardinality of
mapping i. e. the number of pairs of communicating modules
that fall on pairs of directly connected processors in an
eight nearest neighbour array. Igbal ({41 has designed a
heuristic algorithm which works especially well for the
mapping of binary trees onto binary trees. Chung et al. (5]
showed that in order to be able to embed any N-node binary
tree onto a complete binary tree with dilation-cest=1, the
expansion-cost of the target binary tree must be proportioconal

logN.2
to N°9 .

binary tree onto which all binary trees are embeddable with

Hong et al. [6]1 showed that there is a generic

dilation-cost OC10 and expansion-cost OCN®> for some fixed

constant c.

Most of these researchers, while mapping/embedding a
graph onto a target graph, do not work under the constraint
that the son of a node of a graph should always be assigned to

a descendent of the image of that necde in the target graph. It

should be understood that while the above constraint is
optional (but certainly usefuld in the parallel processing
environment, it is a must for the mapping of a binary tree

onto an ALU pipeline.

In this paper, we describe a mapping algorithm which
can be used to find a 1-1 mapping of the nodes of a rooted
binary tree onto the nodes of a target binary tree, under the
constraint discussed earlier in this section. We study the
cost of this mapping in terms of dilation—-cost and
expansion—-cost, and show that it is possible to minimize one
of these costs only at the expense of an increase in the other

cost.

In Section 2, we define certain terms relevant to our
research. A mapping algorithm is described in Section 3. In
Section 4, we use a similar algorithm to find a mapping of a
binary tree onto a given ALU pipeline with different
dilation-costs and expansion-costs. We also describe a scheme
in this section that can be used to find a minimal super tree
which contains an arbiirary number of binary trees, provided
we impose certain restrictions on the structure of the super
tree. The paper concludes with a discussion of our results in

Section 5.

2. DEFINITIONS

dilated—-mapping

depth(Cko

LLCED

LRCYD

RRCID

RLCED

A 1-1 mapping of the nodes of a given binary
tree onto the nodes of a target binary tree

under the following constraints:

1. The root node of the given binary iree is
assigned to the root node of target binary

tree.

2. Each son of rode t in the given binary
tree is assigned onto an existing descendent
of the image of ¥ in the target binary tree
(see Fig. 1D0. The edgeCi, son(i>> of the
given binary tree is said to be dilated by
an amount equal to the distance in the
target binary tree between the images of
node T and sonCid. CNote that the
expansion—-cost of a dilated-mapping is

always zerod

distance of node k from the root. The value
of depthl{rcst)>=0. The maximum value of

depthCkR> for 1=k=m 1is denocted by dm

o’
is true if a dilated-mapping of tLthe left

tree of node U exists onto the left tree of

image of i, and false otherwise.

is true if a dilated-mapping of the left
tree of node i exists onto the right tree of

the image of t, and false otherwise.

is true if a dilated-mapping of the right
tree of node i exists onto the right tree of

the image of i, and false otherwise,
is true if a dilated-mapping of the right

5

dilate-leftlio

dilate~-rightlio

tree of node ¢t exists onto the left tree of

image of t, and false otherwise.

is true 1if it 1is impossible to determine
whether a dilated-mapping of the left
tree(i) onto left treelCimagelid) exists or
not unless the edgelry, leftsonCi{3D is
dilated and the left tree(id is mapped onto
the left treelCleftsonCimageCiddd, and Ffalse
otherwise. Thus it will be false if either a
dilated-mapping of the left treelid exists
onto the left treeCimageCidD wi thout
dilating the edgelt, leftsonCi2D, or a
dilated-mapping of the left treelil does not
exist onto the left treeCimagelCidd even if
the edgelCi, leftsonCidd is dilated by an

arbitrary amount.

is true if 1t 1is impossible to determine
whether a dilated-mapping of the left
treelCid ‘onto left treelimagel(id)d exists or
not unless the edgeCt, leftsonCidD is
dilated and the left tree(id is mapped onto
the right treel(leftson(imageliddd, and false
otherwise. Thus it will be false if either a
dilated-mapping of the left tree(i:> oxists
onto the left treeCimageC i) without
dilating the edge(i, leftsonCidd, or a
dilated-mapping of the left treel(id does not
exist onto the left treelimagelCidd even if
the edge(i, leftsonCid))d 1is dilated by an

arbitrary amount.

3. AN ALGORITHM TO FinD A DiLaTeED-MAPPING

We will first describe and prove a number of theorems
which will help us in designing the basic algorithm. Given the
flags: LLlleftsonCiDD, RRCleftsonCioo, LRCleftsonCido, and
RiLCleftson(id>, Theorem 1 describes conditions under which the
flag LLCiD is true. The conditions under which the flag LL{iD
is false are discussed in Theorem 2. In Theorem 3, we discuss
conditions under which it is impossible to determine whether
the flag LLCD> 1is true or false unless the edgeC?,
leftsonCid)> is dilated.

31 THEOREM 1

The flag LLCiD> 1s true (bhut not necessarily false
otherwised if LL{leftson(id - RRClefitsonCidd + LR(lefitsonCilD:
RLCleftsonCiD) 1is true. Similarly RR(ID is true C(but not
necessarily false otherwised if LL rightsonCiD

RRCrightson(iod + LRCrightsonCidd - RIL(rightson(ildd is tlrue.

Proof

The AND of LLCleftsonCioD and RRCleftson(il> is true if
it is possible to find a dilated-mapping of the left tree as
well as the right tree of the left son of node t onto the
respective left tree and right tree of image(Cid. This implies
that a dilated-mapping of the left tree of node t ontce the

left tree of image(id exists and thus LL{iLD is true.

The AND of LRCleftson(i>> and RLCleftson(idd is true if
one can find a dilated-mapping of the left tree of the
leftsonCid onto the right tree of the leftsonCimage(Cid>, and
of the right tree of the leftson(i) onto the left tree of the
leftsonCimageCid). This implies that a dilated-mapping of the
left tree of node i onto the left tree of image(id exists and

thus LLC LD is true.nD

The conditions under which LL{ID is true, are shown in
Table 1. It is understood that under these conditions the flag
LLCED is true without Cfurther> dilating the edge(?t,
leftsonCid2, and thus the flags dilate-left and dilte-right

are both false.

3. 2 THEOREM 2

The flag LLCID is false (Cbut not necessarily true

otherwised if LLrightsonCiod LRCleftsonCilD +

RRCleftsonCioD RLCleftsonCito2> is true. Similarly RRCID is

false C(but not necessarily true otherwised if LidlrightsonCild)d

LRCrightson(i>) + RRCrightson(iod - Rilrightson{i2> is true.

Proof

The AND of LlLlleftsordidd and LRCleftsonCid) is true if
it is impossible to find a dilated-mapping of the left tree of
leftsonCid onto the left or right tree of leftsonCimageCidd.
If a dilated-mapping of the left tree of leftson(i{d does not
exist onto the left or right tree of leftsonCimageCidd, then a
dilated-mapping of the left tree of node ¢ can also not exist

and hence LL({D is false. Similarly it can be argued that if

RRCleftsonCio> AND RLCleftson(ilD is true then the flag LLCID

is false.n

The conditions under which the flag LL(I{D is false, are
illustrated in Table 1. It is important to note from the table
that the flag LL(ID is false if a dilated-mapping of the left
tree of node t does not exist onto the left tree of imageCid
even if the edge(i, leftson(idd is dilated by an arbitrary
amount. Thus the flags dilate-left and dilate-right are both

false.

TaBLE 1

LiCleftsonCioD ¢ 0 o o o 6o 001 1 1 1 1 1 1 1
RRCleftson(idD c o o o1 1 1 1 O O O O 1 1 1 1
LRCleftsonCidDd ¢ 01 1 0 ©0 1 1 O O 1 1 O O 1 1
RiCleftson(iol 1 o0 1 01 C 1 O 1 O t O 1 O 1
LLCLD 0 o o1 0 0 2?7 1 O 2 O 1 1 1 1 1
dilate-leftlid ¢ 0o o o 0O 6 6 0O o1 0 0O o o o o
dilate-rightCio 6 0 0O 0 6 61 0 0 0O 0O O o o o o0

3. 3 THEOREM 3

dilate-leftCid =Ll leftson(ird - LRCieflson(iDdD

RRCleftsonCioD - RL(leftsonCi DD

dilate-rightlio =LL{leftson(i2d -+ LR(leftson(ioD

RRCleftsonCidd - RL{leftsoni DD

Proof

The conditions under which dilatle-left./dilate-right is
true or false are illustrated in Table 1. Note that the flags
dilate-left and dilate-right are both false if LLCYD is either
true without C(further? dilating the edgeCi, leftsonCidd, or a
dilated-mapping of the left tree(i) does not exist onto the
left tree of the imageCid even if the edgeCi, leftson(idd is

dilated by an arbitrary amount.

The flag LL{leftson(idd is true if a dilated-mapping of
the left tree of leftson(i) exists onto the left tree of
leftsonCimage(id), while RLleftsonCioD is true if a
dilated-mapping of the right tree of the leftson(i) exists
onto the left +tree of the leftsonCima¢=2013). The flags
LRCleftsonCtd> and RRCleftson(iod are both false when a
dilated-mapping of the left tree of node U onto the left tree
of imageCid does not exist, provided the edgelt, leftsonCidD
is not dilated. Thus whenever the flag dilate-left is true,
there exists a possibilty of finding a dilated-mapping of the
left treeCid if the edgely, leftson(id) is dilated and the
left tree of node ¢ is mapped onto the left tree of the

leftsonCimageCiJdd. o

It is important to note that only one flag (dilte-left or
dilate-right> can be true at a time. Thus dilate-left
Cdilate~-rightd is true if there exists a possibility of LL{iD
becoming true, provided the left tree of ncde ¢ is mapped onto

the left tree Cright treed of leftsonCimageCid).

10

3 4 THE ALGORITHM

Find a trivial mapping of the given binary tree (Ctreell

onto the target binary tree (treez2d. For each node ¢ at depth
maxs 22, the flags: LiCleftson(ioD, RRCleftson(toD,
LRCleftsonCi>>, and RL{leftsonCi.2, can easily be found by
inspection. The flag LL{1> can then be found using the

following procedure:

Given LLCleftsonCiod, RRCleftson(iol, LRCleftson(il>, and
RL{leftsonCido, find if LLCED is true Cuse Theorem 1D or false
Cuse Theorem 2>. If LL(I{D 1is neither true nor false then
either dilate-left or dilate-right (but not bothd will be true
CTheorem 3. Dilate the edge(i, leftson(Cid> and assign the
left tree of node 1 onto the left tree of the
leftsonCimageCid) if dilate-left is true, and onto the right
tree of leftsonCimageCidd, if dilate-right is ftrue. Again work
out the wvalue of LLC{D from the new values of Ll leftson(idD,
RRCleftsonCioD, LRCleftson(ioo, and RLCleftsonCi22. Ir
dilate-left or dilate-right is still true then further dilate
the edgeli, leftsonCidd and repeat this process until LL{D
becomes either true (without further dilationd or it becomes

false Cwith an arbitrary amount of dilationd.

The flags:LLlrightsonl(ioD, RRCrightsonCtoo,
LRCrightsonCi>>, and RLCrightson(i>)> can also be found by

inspection and RRCiD> can then be determined.

Now interchange the left tree of each node ¢ with the
right tree and again find the flags, LICleftsonCidD,
RRCleftsonCio), LRCleftson(idD, and RLlleftsonCro), by
inspection. From these flags work out the value of LRCI>. The

flag RL(CYD can be found in a similar manner.

Once we have the values of LL I, RRCID, LRCY2, and RL{LD

for each node U at depth {d . 2d),the value of these flags
max
for each node at depth dd e 32, can be found in a similar
max
manner. Keep going up in treel until we find the

flags: Ll rootlo, RRCrootl o, LRCrootl>, and RLCrootlD. If
LLCroctl D -RRCrootlo>+LRCrootlo -RLrootl> is true then a

dilated-mapping of treel onto tree2 exists.

3. 5 DiscussioN

1. For any node k of treel, the flag LLCkD is a function of
four flags: Ll leftson(kD2, RRCleftsonl kD2,
LRCleftsonCk>>, and RL{leftson(ko>>. In order to find if
LLCRD ts true Cwithout further dilationd or false Cwith
an arbitrary amount of dilationd, the edgeCk, leftsonlklD

is dilated at the most as many times as (d -
max2 maxt

For each dilation of the edge, the above mentioned four
flags are to be evaluated. Thus, in order to find the

flag LLCkD>, the four flags have to be found out Cd -
™m

ax2
3 times, in the worst case.
maxi
2. The number of steps needed to evaluate the four flags:
LLCleftsonCkoD, RRCleftsonCkoD, LRCleftsonCkOD, and
Rl leftsonCk>D, are, at the most, four times as many as
are required to evaluate a single flag e. g.
LLlleftsonCkdD.
3. In light of (12> and (2>, the maximum number of steps
needed to find LLCkRD will be 40d - d D as many as
max2 maxi

required to find the flag LL{leftsonCk>>. In order to
find if a dilated-mapping of treel exists onto tree2, the

maximum number of steps will be 4Cd - d > times as
max2 maxi

many as are required to {find LLlleftsonCrootl>. Similarly

Lthe number of steps needed to find LL{leftsonlrootl) will

i1z

again be 4Cd - d 2 times as m-ny as are required to
max2 maxt

evaluate the flag Ll(leftson(leftson{rootl>>>. Thus, in
order to find if a dilated-mapping of (reel exists onto

tree2, the algorithm will perform steps proportional to

maxt max1i

ocdd - d > x (42 .

max2 maxi

3. 6. ExamPLE 1

We show treel in Fig. 2Cad and tree2 in Fig. a(bd, with
the root node of each tree shown in bold. Note that dmma=7’

and dmmu=4' The depth of some of the nodes of treel is also
indicated in Fig. 2Cad. A trivial mapping of treel onto treez
is shown in Fig. 3(b>. In this mapping reootl is mapped onto
root2 and the leftson C(rightson) of each node ¢ is mapped onto

the leftson C(rightson) of the imagelid) of treez.

For each non leaf node ¢ of treel at depth=3, the flags,
LLCg>, RRC@>, LRCg>, and RL(g> are determined by inspection
and are indicated with each node in the respective order (Fig.
3Cad))>. Thus for @=15, all the four flags are true and are
indicated by the pattern *1111’, while for @=8, both LL(g> and
RLC@> are true but RR(g> and LR(g> are both false and are
indicated by the combination *1001°’, as shown in Fig. 3(bd.

As the four flags for node ¢=15 are all true and @ is the
rightson of node 7, so, according to Theorem 1, RR(7D is also
true. Thus LLC7> and RRC7D are both true as indicated in Fig.
3Cad). The four flags for node 8, which is the leftson of node
4, are also indicated in the figure. Under such conditions the
flag LLC4D is false if the edge(4, leftsonC43) is not dilated,
but may become true if the edge is allowed to be dilated (note
that the flag dilate-left is true 3. The flag LLC4D does,
indeed, become true when the edge(4, 8) is dilated as shown in

Fig. 4.

13

In order to determine the flags LR and RL for nodes 4
and 7, the left tree of each .node is interchanged with the
right tree, as shown in Fig. 5. The fiag LR(4D is false if the
edgeC4, 8) is not dilated, but may become true if 1t 1is
dilated towards right as the flag dilate-right is true (see
Fig. 8Cbl2. The LRC4D comes out to be false, as shown in Fig.
6. The four flags for nodes 2 and 3 are indicated in Fig. 7.
In order to find LLCrootl>, the edge(l, 2> is dilated various
times, as shown in Fig. 8, 9, 10, and 11. Both the flags
LLCrootl> and RRCrootl> come out to be true as indicated in
Fig. 12. Thus, it is possible to find a dilated-mapping of

treel onto tree2.

14

4. APPLICATIONS

Definitions:

dilated-mappingCk>

super—tree

best-mappingC RO

is a dilated-mapping of a given binary
tree onto a target binary tree in which
the dilation-cost is equal to or less
than k. Remember, that the expansion-cost
of a dilated-mapping is always zero. A
dilated—mapping(ki) is called a minimal
dilated-mapping if it is not possible to
find a dilated—mappinngZD with kz< k{

is a binary tree with respect to a set of
binary trees Cknown as a tree setd) if it
is possible to find a dilated-mapping of
each binary tree of the set onto it. A
super -tree containing R nodes is a
minimal super-tree if il is nol possible
to find a super—-tree having nodes less

than k.

is a mapping of the nodes of a given
binary tree onto the nodes of a target
binary tree under the following

constraints:

1. The rocot of the given binary tree is
assigned to the root of the target

binary tree.

2. Each sonCid, in +the given binary
iree, is assigned onto a
descendent(imageCidd in the target
binary tree. Note that the
descendentCimage(id2> may or may not

exist.

15

3. The expansion-cost is minimal and the
dilaticon-cost is less than or equal to

k.

4 1 FinDING A MiniMAL DiLATED-MaAPPING

If a dilated-mapping of treel onto tree2 exists wherein
each edge of treel is dilated by no more than k times, then
the algorithm of Section 3 will always find a
dilated-mappingCkd>. The value of k may vary from zero, when it
is possible to find a mapping of treel onto tree2 without any

dilation, and to Cd - d D), when the amount of dilation
max2 maxi

is maximum. The minimal dilated-mapping can be found by making

a binary search in the range O0O<k=s(d - d 3, using the
max2 maxi

algorithm of Section 3 to find the dilated-mappinglkd for

which R is minimum.

4 2. FiNnDING A MiNiMAL SUPER T REE

The problem of finding a minimal super-tree with respect
to a set of binary trees, is difficult to solve in general. In
practical situations, however, il 1is possible to find a
minimal super-tree using the algorithm described in Section 3
as follows: We enumerate all non isomorphic rooted binary
trees of a given depth. For each such binary tree, we check if
it is possible to find a dilated-mapping of each member binary
tree of the tree set onto the selected binary tree. The binary
tree which passes this test and which contains minimum number

of nodes, will be the minimal super—-tree with respect to the

tree-set.
Unfortunately, the number of non isomorphic rooted binary
trees is prohibitively large for depths of any practical

interest. A practical implementation of a super-tree on a

16

—,f———— — -

printed circuit board, however, imposes further constraints on
the structure of the super-tree and limits the number of non
isomorphic rooted binary trees. A printed circuit board, for
example, is usually stuctured in the form of a NxN grid, where

sach node of the super-tree is mapped onto a grid point.

Keeping in view the complexity, size, and input-output
requirements of each node of the super-tree (i. e. the ALU
pipeline), the value of N is no larger than 10, provided the
super-tree is implemented on a single printed circuit board.
Out. of the resulting non isomorphic rooted binary trees, the
minimal super-tree can be found in a reascnable amount of
time. In a NxN grid, for example, the number of chips at
depth=d, are proportional to d and the total number of nodes
in a binary tree will be ocd®>. The resulting number of
nonisomorphic binary trees will be an exponential function of

the size of the grid which is N,

4 3 FINDING A BEST-MAPPING

We have already discussed techniques to find a
dilated-mapping C(provided such a mapping exists> of a given
binary tree onto a target binary tree with minimum
dilation-cost Cremember that the expansion—-cost of a
dilated-mapping is always zercd. If such a mapping does not
exist, or if its dilation-cost is prochibitively large, then we
are left with the only option of finding a best-mapping(k> of
the given binary tree onto the target binary tree. Note, that
the best-mappingC(kd has a minimal expansion~-cost and a

dilation-cost equal to or less than R.

The algorithm that we describe here, can be used to find
best-mappings of a binary tree onto another binary tree with
varying dilation-costs and expansion-costs. We show that i is

possible to minimize one of these costs only at the expense of

17

increase in the other. Using this information, one can find

the best possible compromise between these two costs.

Definitions:

BLLCID

BRRC YD

BLRCYD

BRLCYD

dilate-leftii>o

Jitlate—righitdil

THEOREM 4

is the expansion-cost of the best-mabpping of
the left treeCid onto the left
treeCimageCid).

is the expansiocon-cost of the best-mapping of
the right treeCid onto the right
treeCimageCidD.

is the expansion-cost of the best-mapping of
the left treeCid onto the right
treeCimageCidD.

is the expansion-cost of the best-mapping of
the right treeCid onto the left
treeCimageCi).

is true if it is impossible to determine the
best-mappingCkd of left treeCi) onto the
left treeCimageCd> unless the edgelt,
leftsonCid) is dilated and the left treelid
is mapped onto the left
treeCleftsonCimageCid3).

is true if it is impossible to determine the
best-mappingCkd of left tree(id onto the
left treeCimageCidd unless the edge(t,
leftsonCi2) is dilated and the left treelid
is mapped onto the right
tree(leftsonCimageCidD).

The flag dilate-left(id is true if and only if:

BRLCleftsonCtoD < BRRCleftsonCio) and
BLLCleftsonCroD < BLR(Cleftson(iloD

i8

The flag dilate-right(i) is true if and only if:
BRLCleftsonCioD> > BRRCleftson(i)> and
BLiCleftson(id> > BLRCleftson(ioD

Procf

If [BLL{leftsonCio> + BRLCleftsonidd] is less than
{(BLLCleftson({tDD + BRRCleftsonCi221} as well as
[BLRCleftson(ioD> + BRL(leftson(il>), then it is not possible
to find a best-mapping(k) of the left tree(id onto the left
treeCimage(id) unless the edge(ti, leftsonCid) is dilated and
left treeCid is mapped onto the left treeCleftsonCimageCiddD.
Under such conditions, there always exist a possiblity of
reducing the expansion-cost of a mapping of left treeCid onto
the left treelCimageCidd, provided the edgel(i, leftsonCid) is
dilated.o

The conditions under which the lag
dilate-leftCid/dilate-rightCyd is true or false are,
illustrated in Table 2. It is important to note that only one

flag i. e. dilate-left or dilate-right is true at a time.

THEOREM 5

BLLCTD = BLL{leftsonCid) + BRRCleftsonCidD if
BRLCleftsonCiD) 2 BRRCleftson(CidD
and BLL leftson(id) £ BLRCleftsonCidD

BLRCleftsonCid2> + BRL(CleftsonCidD if
BRLCleftsonCiD)D < BRRCleftsonCidD
and BLLCleftson(i)) 2 BLRCleftsonCidD

Proof

Ir {BRLCleftson(idD > BRRCleftson(id)] and
[BlLLCleftsonCiD> < BLRCleftson(id)D] or [BRLCleftsonCidD> <
BRRCleftsonCiD2])] and [BlLlCleftson(Cid) 2 BLRCleftson(id0] then

19

dilate-left(Cid and dilate-rightCid are both false, as shown in
Table 2. Under such conditions, it is possible to determine
the best-mappingCkd of the 1left treeCid onto the left
treeCimagelCidd without dilating the edgelCi, leftsonCid). The
expansion-cost of the best-mappinglk) of the left treelid onto

left treeCimageCid) is given below.o

expansion—cost = min[[BLL 1z tson(id2> + BRR(CleftsonCid2],
(BLRCleftson(i2> + BRLCleftson(id21]

THE ALGORITHM

The algorithm to find a best-mappingCkd of a given binary
tree onto a target binary tree, is similar to the algorithm
described in Section 3. 4, except that the variables BLL, BRR,
BLR, and BRL are no longer true or false, but are integers.
Given BLlL leftson(id), BRRC(leftsonCid), BLR(leftsonCid>, and
BRLCleftson(id)D>, we can find BLLCID using Table 2, provided
dilate-left(id and dilate-right(id are both false. Dilate C(but
not more than k timesd the edgeli, leftsonCid) and assign the
left treeCtd onto the left treelleftsonCimage(i{dd>, 1if
dilate-left is true, and onto the right

tree(leftsonCimageCidd, if dilate-right is true.

The rest of the algorithm is exactly the same as
described before. The expansion-cost of the best-mappingCk) of
the given binary tree onto the target binary tree, will be
minf (BLLCleftsonCrootd o+ BRRCleftsonCrootsd],
{BLRCleftsonCrootd)> + BRL(leftsonCroot>3]]. The algorithm
performs the same number of steps as before in order to find
the best-mappingC(k) of a given binary tree onto a target

binary tree

20

TaBLE 2

dl dr

BLLCID
BLLC y>=BLRC j> BRLC j>=BRRC jO BLLC jO+BRRC 5O o o)
BLLC j>=BLRC j BRLC j>>BRRC j> BLLC j>+BRRC j 0 0
BLLC j>=BLRC 7 BRLC yO<BRRC jD BLRC jO+BRLC jD 0 0
BLLC j>>BLRC 3D BRLC yO>=BRRC jD BLRC jO+BRLC 3> o 0
BLLC y>>BLRC 5> BRLC j>>BRRC j2 ? o 1
BLLC jO>BLRC 5> BRLC jO<BRRC j> BLRC j>+BRLC j> o o)
BLLC j><BLRC 7> BRLC y>=BRRC j2 BLLC jO+BRRC 5O 0 0
BLLC jO<BLRC j> BRLC 7O >BRRC 7> BLLC j>+BRRC 7> 0 o
BLLC jO<BLRC jD BRLC j><BRRC jO ? 1 o

J=leftsonCiD

dl=dilate-leftlid

21

dr=dilate-rightlid

ExamMPLE 2

Let us find a best-mappinglkd of treel of Fig. 2Cad onto
tree2 of Fig. 2(bd> for k = O, 1, 2, and 3. Fig. 13 shows a
best -mapping(0> of treel onto tree2. The values of BLL, BRR,
BLR, and BRL are all indicated with some nodes 1in the
respective order. The expansion-cost of the best-mapping(03 is
shown to be 7. We show a best-mapping(l1) of treel onto treed
in Fig. 14. The expansion-cost of this mapping is only 1. A
best-mappingC(a) of treel onto tree2 does not produce any
better results and is, therefore, not shown. A best-mapping(3>
is shown in Fig. 12. Its expansicn-cost is zero and thus it is

a dilated-mapping(3> of treel onto treec.

The above expansion-costs and corresponding
dilation-costs are plotted in Fig. 15. Note that when the
dilation-cost is zero, the expansion-cost is maximum and is
equal to 7. On the other extreme, when the dilation-cost is 3,
the expansion-cost is minimum equal to zero. ¥hen the
dilation-cost is allowed to increase from zero to 1, the
expansion-cost reduces dramatically from 7 to 1, but when the
dilation—-cost is changed from 1 to 2, the expansion-cost does

not reduce.

The best possible compromise between dilation-cost and
expansion~cost c¢can now be found. For example, if the
expansion-cost, corresponding to dilation-cost=0, is
unacceptable, and if the dilation-cost corresponding to
expansion-cost=0, is prohibitively large, then the best
solution is to allow a dilation-cost of not more than 1. The

corresponding expansion-cost will also be 1 in this example.

ce

5. CONCLUSIONS.

We have described an algorithm which can be used to find
a mapping of a given binary tree conto a target binary tree,
provided that the son of a node of the given binary tree is
assigned to a descendent of the image of that node in the
target binary tree. The cost of the mapping is expressed in
terms of dilation—-cost and expansion-cost. We have shown that
it is possible to minimize one cost of mapping only at the
expense of increase in the other. It is possible to extend
this approach for k-ary trees (provided k is smalld, although
it will be difficult to apply this technigue to graphs other

than trees.

An scheme to find a minimal super-—-tree which contains an
arbitrary number of binary trees, is also discussed. This
scheme is feasible, provided we impose certain restrictions on

the structure of the super-tree.

The algorithm that we have described in this paper, is
equally applicable in a parallel processing environment. The
problem here is to add minimum number of processors to the
already configured processor tree, in order to match the
program binary tree with the machine architecture. If,
however, the change of hardware is not a feasible option, Lhen
we should assign more than one program nodes to a processor
node so that the reduced program binary tree can nicely fit
the intended tree machine. The problem, in general, 1is
difficult to solve and is an open challenge for people working

in this field.

23

6. REFERENCES

{11 P. B. Schneck, D. Austin, S. L. Squires, J. Lehmann,
D. Mizell & K. Wallgren, "Parallel Processor Programs in the
Federal CGovernment.®™ IEEE Computer, vol. 18, No. 6, pp. 432-56,
June 1985.

£t21 D. N. Nosenchuck and M. G. Littman, "The Coming Age of
Parallel Processing Supercomputer,’” Presented at the 23rd

Annual Space Conference, April 1986.

[3) 5. Bokhari, "On the Mapping Problem,®” ILEE Tran.
Comput. ,vol. C-30. No. 3, 1980.

(4] M. A. Igbal, "A Heuristic Algorithm for the Mapping
Problemn, M. Sc. Dissertation, Department of Electrical
Engineering, Engineering University Lahore, Pakistan, April

1983.

(31 F. R. K. Chung, R. L. Graham & D. Coppersmith, "On
Tree’s Containing all Smaller Trees," Proceedings of the

Fourth Internaticonal Graph Theory Conference, 1979.
[6) J. W. Hong, K. Mehlhorn, and A. L. Rosenburg, *Cost

Trade-0Off’s in Graph Embeddings with Application,™ J. A4ss.
Comput. Mach., vol. 30, No. 4, Oct. 19863.

=4

—

Fig. 1

25

leftson(i) M)

leftson(image(i)) rightson(imagoe(i))

grandson(iniage(i}) grandson(image(i))

A given binary tree shown in black while the target binary tree

is shown in grey. Node i of the given binary tree is mapped onto
an image(i) of the target binary tree. In a dilated-mapping of a
binary tree onto another binary tree, each son(i) is mapped onto
either an existing son or a descendent (e. g. a grandson) of image(i)

in the target binary tree.

26

(a)

@ ?
16[4] 17[4]

(b) q

Fig. 2 (a)treel and (b) tree2. The root node of each binary tree
is shown in bold. The depth of some nodes of treel is also
indicated in square brackets, thus depth of node 5 is 2.

27

(a)

(b)

Fig. 3 (a) tree 1 & (b) a trivial mapping of tree1 onto tree2. For each
nonleaf node q of tree 1 at depth=3 the flags LL, RR, LR, & RL
are indicated with each node in the respective order. When q
is equal to 8, for example, LL & RL are both true while RR & LR
are false as indicated in (a).

(a)

)
Pt
£ @

16 17

o AR

2@ 1@
\ - 2 \
())0 O © O <@ 1@
e \"" O O sO/\a.
€c \@* O O o
) @ O O

....

Fig. 4 The flag LL(4) is false if the edge(4, 8) is not dilated but becomes
true when the edge is dilated towards left once as shown in bold
in (b). The flag RR(4) is already true.

29

(a)

(b) e/ 28
e N
N\

olgy 0110000 06 O i1 N

I g g” & ¢ Q

Fig. 5 In order to determine the filags: LR & RL for nodes ¢ & 7, we
interchange the left tree of each node with its right tree as shown
in (b). The flag LR(4) is false if the edge(4, 8) is not dilated but may
become Urue if it is dilated towards right.

*(a)

Y AN
N\

1101 & \ D 0O & T31111 2@
X \.-@ “., S2Ne o
9, ®) O O e
() @ O O
0 O O

Fig. 6. The edge(4,8) is dilated towards right once, indicated in bold,
as shown in (b). The resulting value of the flag LR(4) i5 false
as shown in (a).

i,

31

(a)

(b)

Fig. 7 The four flags: LL, RR, LR, & RL for nodes 4, 5, 6 and 7 are
indicated in the respective order in (b). The resuiting four
fiags for nodes 2 and 3 are shown in (a).

32

(a)

w S
N

e (2 (] @,
A R C \" 8/ \9 o, \o,
Q) R O O O &
() (] Q O O

Fig. 8 In order to determine the flag LL(root1)/RR(root1) the
edge(1,2)/(edge(1,3)) is dilated as shown in bold in (b).

33

(a)

(b) / ""\\]
AN

() (J) 2 LD
/.o ® \O> g/ \9 ./ \. 1111
uu lll O ‘.n
() > @ D O

Fig. ¢ The flags LL and RR for nodes 4 as well as 7, are both true as
shown in (a). The actual dilated-mapping is shown in (b) with
each dilated edge indicated in bold.

(a)

o AN
N\,

a) (d
@
of N 7o~ \
v U 111 C)
1111 gy D 1111 ./) .
/ /) D
‘e o AR o) 3 O

Fig. 10 All the four flags: LL(3), RR(3), LR(3), & RL(3) are shown in (a).
The dilated-mapping for the right tree of node 1 is shown in (b).

35

(a)
8
& 5
10 1112 13
£ G)
16 17 18 19 70

VAN
4

." @ 9‘

o ‘g,\%> <?/”\\
/9 R @’C/{ e

\/

Fig. 11 The edge(l, 2) is dilated thrice as shown in (b). The flag LL(2)1s
thus false while RR(2) is true as indicated in (a).

(a)

(b) /

() () '9‘/ \O)
:./ 0 0!\0, *./\.
1111 ¢ O, 1108 /\.
/ / \ » D) S

) () () O O
./ \Q. .! \9 }3

%

Fig. 12 Both LL(root) and RR{root) are true as shown in (a). Thus
it 1s possible to find a dilated-mapping of tree 1 onto tres?2
which {: shown in (b).

(a)

(b)

Fig. 13

A G|.\

% L)

* @ (J /
8@, e.\c O © © Y 2@,

@
()

O O e
@ O O O
O @ @

A best-mapping(0) of tree1 onto tree2. The values of BLL, BRR, BLR,
& BRL are also indicated with some nodes in the respective order in

(a). The expansion-cost of the mapping is 7.

38

(a)

2 Lol

w S .
N\

v L) /0
f o) o
/ a \
Yy . Y . YN
» A\
/0 /0.*’ n O o’ >
‘g o AR e\ o)

Fig. 14 A best-mapping(1) of tree1 onto tree2. Each dilated edge is shown
in bold. The expansion-cost of the best-mapping(1) is 1.

Fig. 15

Expansion-cost

\ Dilation-cost
0 i 2 3 4
Expansion-cost, corresponding to best-mapping(k) of treel

onto tree2, is plotted against dilation-cost.

mm Report Documentation Page

DCACE ATV AON

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA CR-181980
ICASE Report No. 90-6
4. Title and Subtitie 5. Report Date

EFFICIENT ALGORITHMS FOR DILATED MAPPINGS January 1990

OF BINARY TREES 6. Parforming Organizauon Code
7. Author(s} 8. Performing Organization Report No.
30-6

M. Ashraf Igbal

10. Work Unit No.

505-90-21~01

9. Performing Organization Name and Address

Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering , _

Mail Stop 132C, NASA Langley Research Center NAS1-18107

Hampton, VA 23665-5225 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center 14. Sponsoring Agency Code

dampton, VA 23665-5225

Contractor Report

15. Supplementary Notes

Submitted to IEEE Trans.
Parallel & Distributed
Computing

Langley Technical Monitor:
Richard W. Barnwell

Final Report
16. Abstract - ’
\ . .

We addressithe problem of finding a 1-1 mapping of the vertices of a binary tree onto those of
a target binary tree such that the son of a mode on the first binary tree is mapped onto a.desendent
of the image of that node in the gecond binary tree. There are two natural measures of the cost of
this mapping, ramely the dilation cost i.e. the maximum distance in the target binary tree between
the images of vertices that are adjacent in the original tree. The other measure, expansion cost, is
defined as the number of extra nodes/edges to be added to the target binary tree in order to ensure
a 1-1 mapping. We—deseribe an efficient algorithm, to find a mapping of one binary tree onto another.
We-show- thet it is possible to minimize one cost of mapping at the expense of the other.

This problem arises when designing pipelined Arithmetic Logic Units for special purpose com
puters. The pipeline is composed of ALU chips connected in the form of a binary tree. The ope.ands
to the pipeline can be supplied to the leaf nodes of the binary tree which then process and pass the
regults up to their parents. The final result is available at the root. As each new application
may require a distinct nesting of operationa, {t is use“ul to be able to find a good mapping of a
new binary tree over existing ALU tree. Another problem arises if every distinct required binary
tree i3 known beforehand. Here it is useful to hardwire the pipeline in the form of a minimal su-
pertree that contains all required binary trees. '

17. KXoy Words {Suggested by Authoris)) 18. Distribution Statement

Assignment, dilation, embedding, mapping
problem, parallel processing, pipeline 59 - Mathematical and Computer
Sciences (General)

Unclassified - Unlimited
19. Secunty Classif. {of this report) 20. Secunty Classif. (of this page) 21 No. of pages 2. Price
Unclassified Unclassified 41 AD3

NASA FORM 1628 OCT 98

NASA-Langley. 1990

